Protein synthesis is accomplished through a process called translation. After DNA is transcribed into a messenger RNA (mRNA) molecule during transcription, the mRNA must be translated to produce a protein. In translation, mRNA along with transfer RNA (tRNA) and ribosomes work together to produce proteins.
Stages of Translation in Protein Synthesis
- Initiation: Ribosomal subunits bind to mRNA.
- Elongation: The ribosome moves along the mRNA molecule linking amino acids and forming a polypeptide chain.
- Termination: The ribosome reaches a stop codon, which terminates protein synthesis and releases the ribosome.
Transfer RNA
Transfer RNA plays a huge role in protein synthesis and translation. Its job is to translate the message within the nucleotide sequence of mRNA to a specific amino acid sequence. These sequences are joined together to form a protein. Transfer RNA is shaped like a clover leaf with three loops. It contains an amino acid attachment site on one end and a special section in the middle loop called the anticodon site. The anticodon recognizes a specific area on a mRNA called a codon.
Messenger RNA Modifications
Translation occurs in the cytoplasm. After leaving the nucleus, mRNA must undergo several modifications before being translated. Sections of the mRNA that do not code for amino acids, called introns, are removed. A poly-A tail, consisting of several adenine bases, is added to one end of the mRNA, while a guanosine triphosphate cap is added to the other end. These modifications remove unneeded sections and protect the ends of the mRNA molecule. Once all modifications are complete, mRNA is ready for translation.